Professional-Machine-Learning-Engineer Dumps Special Discount for limited time 無料でお試しください。

5月 28, 2023 0 コメント

この記事を評価する

Professional-Machine-Learning-Engineer Dumps Special Discount for limited time Try FOR FREE

Professional-Machine-Learning-Engineer Dumps for success in Actual Exam May-2023]

Career Bonuses

The Google Professional Machine Learning Engineer certification proves that the successful candidates possess sufficient knowledge and skills to design and create scalable solutions for optimal performance. Some of the job roles that these individuals can consider include a Data Engineer, a Senior Data Engineer, a Machine Learning Engineer, a Technical Solutions Engineer, a Software Engineer, and a Cloud Infrastructure Engineer, among others. The median salary that the certificate holders can count on is around $140,000 per annum.

Exam Details

The Google Professional Machine Learning Engineer exam is two hours long. The candidates can expect multiple-choice as well as multiple-select questions in their delivery of the certification test. The exam is currently given to the learners in the English language. To register for and schedule it, you need to pay $200 (plus applicable taxes). While registering for the test, the potential applicants will be offered to select the convenient mode of exam delivery: an online proctored session from a remote location or an in-person proctored session at the nearest testing center.

The Google Professional Machine Learning Engineer Certification Exam consists of multiple-choice questions and performance-based scenarios that test your ability to design and implement machine learning models on the Google Cloud Platform. The exam covers a wide range of topics, including data preparation, model training and evaluation, and deployment of machine learning models in a production environment.

 

質問44
You are training a TensorFlow model on a structured data set with 100 billion records stored in several CSV files. You need to improve the input/output execution performance. What should you do?

 
 
 
 

質問45
You built and manage a production system that is responsible for predicting sales numbers. Model accuracy is crucial, because the production model is required to keep up with market changes. Since being deployed to production, the model hasn’t changed; however the accuracy of the model has steadily deteriorated. What issue is most likely causing the steady decline in model accuracy?

 
 
 
 

質問46
You work for a magazine publisher and have been tasked with predicting whether customers will cancel their annual subscription. In your exploratory data analysis, you find that 90% of individuals renew their subscription every year, and only 10% of individuals cancel their subscription. After training a NN Classifier, your model predicts those who cancel their subscription with 99% accuracy and predicts those who renew their subscription with 82% accuracy. How should you interpret these results?

 
 
 
 

質問47
A Machine Learning Specialist deployed a model that provides product recommendations on a company’s website. Initially, the model was performing very well and resulted in customers buying more products on average. However, within the past few months, the Specialist has noticed that the effect of product recommendations has diminished and customers are starting to return to their original habits of spending less.
The Specialist is unsure of what happened, as the model has not changed from its initial deployment over a year ago.
Which method should the Specialist try to improve model performance?

 
 
 
 

質問48
You work for an online publisher that delivers news articles to over 50 million readers. You have built an AI model that recommends content for the company’s weekly newsletter. A recommendation is considered successful if the article is opened within two days of the newsletter’s published date and the user remains on the page for at least one minute.
All the information needed to compute the success metric is available in BigQuery and is updated hourly. The model is trained on eight weeks of data, on average its performance degrades below the acceptable baseline after five weeks, and training time is 12 hours. You want to ensure that the model’s performance is above the acceptable baseline while minimizing cost. How should you monitor the model to determine when retraining is necessary?

 
 
 
 

質問49
You are an ML engineer at a large grocery retailer with stores in multiple regions. You have been asked to create an inventory prediction model. Your models features include region, location, historical demand, and seasonal popularity. You want the algorithm to learn from new inventory data on a daily basis. Which algorithms should you use to build the model?

 
 
 
 

質問50
A retail company is using Amazon Personalize to provide personalized product recommendations for its customers during a marketing campaign. The company sees a significant increase in sales of recommended items to existing customers immediately after deploying a new solution version, but these sales decrease a short time after deployment. Only historical data from before the marketing campaign is available for training.
How should a data scientist adjust the solution?

 
 
 
 

質問51
You work for a public transportation company and need to build a model to estimate delay times for multiple transportation routes. Predictions are served directly to users in an app in real time. Because different seasons and population increases impact the data relevance, you will retrain the model every month. You want to follow Google-recommended best practices. How should you configure the end-to-end architecture of the predictive model?

 
 
 
 

質問52
Your team is building an application for a global bank that will be used by millions of customers. You built a forecasting model that predicts customers1 account balances 3 days in the future. Your team will use the results in a new feature that will notify users when their account balance is likely to drop below $25. How should you serve your predictions?

 
 
 
 

質問53
You work as an ML engineer at a social media company, and you are developing a visual filter for users’ profile photos. This requires you to train an ML model to detect bounding boxes around human faces. You want to use this filter in your company’s iOS-based mobile phone application. You want to minimize code development and want the model to be optimized for inference on mobile phones. What should you do?

 
 
 
 

質問54
You are experimenting with a built-in distributed XGBoost model in Vertex AI Workbench user-managed notebooks. You use BigQuery to split your data into training and validation sets using the following queries:
CREATE OR REPLACE TABLE ‘myproject.mydataset.training’ AS
(SELECT * FROM ‘myproject.mydataset.mytable’ WHERE RAND() <= 0.8);
CREATE OR REPLACE TABLE ‘myproject.mydataset.validation’ AS
(SELECT * FROM ‘myproject.mydataset.mytable’ WHERE RAND() <= 0.2);
After training the model, you achieve an area under the receiver operating characteristic curve (AUC ROC) value of 0.8, but after deploying the model to production, you notice that your model performance has dropped to an AUC ROC value of 0.65. What problem is most likely occurring?

 
 
 
 

質問55
A Machine Learning Specialist is training a model to identify the make and model of vehicles in images. The Specialist wants to use transfer learning and an existing model trained on images of general objects. The Specialist collated a large custom dataset of pictures containing different vehicle makes and models.
What should the Specialist do to initialize the model to re-train it with the custom data?

 
 
 
 

質問56
A Machine Learning Specialist is developing a daily ETL workflow containing multiple ETL jobs. The workflow consists of the following processes:
* Start the workflow as soon as data is uploaded to Amazon S3.
* When all the datasets are available in Amazon S3, start an ETL job to join the uploaded datasets with multiple terabyte-sized datasets already stored in Amazon S3.
* Store the results of joining datasets in Amazon S3.
* If one of the jobs fails, send a notification to the Administrator.
Which configuration will meet these requirements?

 
 
 
 

質問57
Your organization wants to make its internal shuttle service route more efficient. The shuttles currently stop at all pick-up points across the city every 30 minutes between 7 am and 10 am. The development team has already built an application on Google Kubernetes Engine that requires users to confirm their presence and shuttle station one day in advance. What approach should you take?

 
 
 
 

質問58
You work for a bank and are building a random forest model for fraud detection. You have a dataset that includes transactions, of which 1% are identified as fraudulent. Which data transformation strategy would likely improve the performance of your classifier?

 
 
 
 

質問59
You are training an object detection machine learning model on a dataset that consists of three million X-ray images, each roughly 2 GB in size. You are using Vertex AI Training to run a custom training application on a Compute Engine instance with 32-cores, 128 GB of RAM, and 1 NVIDIA P100 GPU. You notice that model training is taking a very long time. You want to decrease training time without sacrificing model performance. What should you do?

 
 
 
 

質問60
You are an ML engineer at a bank that has a mobile application. Management has asked you to build an ML-based biometric authentication for the app that verifies a customer’s identity based on their fingerprint. Fingerprints are considered highly sensitive personal information and cannot be downloaded and stored into the bank databases. Which learning strategy should you recommend to train and deploy this ML model?

 
 
 
 

質問61
A financial services company is building a robust serverless data lake on Amazon S3. The data lake should be flexible and meet the following requirements:
* Support querying old and new data on Amazon S3 through Amazon Athena and Amazon Redshift Spectrum.
* Support event-driven ETL pipelines
* Provide a quick and easy way to understand metadata
Which approach meets these requirements?

 
 
 
 

質問62
You work for a company that is developing a new video streaming platform. You have been asked to create a recommendation system that will suggest the next video for a user to watch. After a review by an AI Ethics team, you are approved to start development. Each video asset in your company’s catalog has useful metadata (e.g., content type, release date, country), but you do not have any historical user event dat a. How should you build the recommendation system for the first version of the product?

 
 
 
 

質問63
You built a custom ML model using scikit-learn. Training time is taking longer than expected. You decide to migrate your model to Vertex AI Training, and you want to improve the model’s training time. What should you try out first?

 
 
 
 

質問64
You work for a large hotel chain and have been asked to assist the marketing team in gathering predictions for a targeted marketing strategy. You need to make predictions about user lifetime value (LTV) over the next 30 days so that marketing can be adjusted accordingly. The customer dataset is in BigQuery, and you are preparing the tabular data for training with AutoML Tables. This data has a time signal that is spread across multiple columns. How should you ensure that AutoML fits the best model to your data?

 
 
 
 

質問65
A Machine Learning Specialist at a company sensitive to security is preparing a dataset for model training. The dataset is stored in Amazon S3 and contains Personally Identifiable Information (PII).
The dataset:
* Must be accessible from a VPC only.
* Must not traverse the public internet.
How can these requirements be satisfied?

 
 
 
 

Accurate Professional-Machine-Learning-Engineer Answers 365 Days Free Updates: https://www.topexamcollection.com/Professional-Machine-Learning-Engineer-vce-collection.html

         

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

以下の画像からテキストを入力してください。